Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1323260

ABSTRACT

Molecular docking is widely used in computed drug discovery and biological target identification, but getting fast results can be tedious and often requires supercomputing solutions. AMIDE stands for AutoMated Inverse Docking Engine. It was initially developed in 2014 to perform inverse docking on High Performance Computing. AMIDE version 2 brings substantial speed-up improvement by using AutoDock-GPU and by pulling a total revision of programming workflow, leading to better performances, easier use, bug corrections, parallelization improvements and PC/HPC compatibility. In addition to inverse docking, AMIDE is now an optimized tool capable of high throughput inverse screening. For instance, AMIDE version 2 allows acceleration of the docking up to 12.4 times for 100 runs of AutoDock compared to version 1, without significant changes in docking poses. The reverse docking of a ligand on 87 proteins takes only 23 min on 1 GPU (Graphics Processing Unit), while version 1 required 300 cores to reach the same execution time. Moreover, we have shown an exponential acceleration of the computation time as a function of the number of GPUs used, allowing a significant reduction of the duration of the inverse docking process on large datasets.


Subject(s)
Algorithms , High-Throughput Screening Assays/methods , Molecular Docking Simulation , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Software , Computer Graphics , Humans , Ligands , Reproducibility of Results , Workflow
2.
Appl Intell (Dordr) ; 51(12): 8784-8809, 2021.
Article in English | MEDLINE | ID: covidwho-1191185

ABSTRACT

This paper focus on multiple CNN-based (Convolutional Neural Network) models for COVID-19 forecast developed by our research team during the first French lockdown. In an effort to understand and predict both the epidemic evolution and the impacts of this disease, we conceived models for multiple indicators: daily or cumulative confirmed cases, hospitalizations, hospitalizations with artificial ventilation, recoveries, and deaths. In spite of the limited data available when the lockdown was declared, we achieved good short-term performances at the national level with a classical CNN for hospitalizations, leading to its integration into a hospitalizations surveillance tool after the lockdown ended. Also, A Temporal Convolutional Network with quantile regression successfully predicted multiple COVID-19 indicators at the national level by using data available at different scales (worldwide, national, regional). The accuracy of the regional predictions was improved by using a hierarchical pre-training scheme, and an efficient parallel implementation allows for quick training of multiple regional models. The resulting set of models represent a powerful tool for short-term COVID-19 forecasting at different geographical scales, complementing the toolboxes used by health organizations in France.

SELECTION OF CITATIONS
SEARCH DETAIL